SCHEME OF WORK FOR FIRST TERM MATHEMATICS JSS 3

WEEK	TOPIC
1	Revision of JSS 2 work
2	The Binary number system
3	Binary number system continued
4	Algebraic Processes
5	Word problems
6	Change of subject of formulae
7	Revision of first half terms work and periodic test
8	Statistics
9	Statistics Continued
10	Simple equations involving \quad fraction and

WEEK TWO

BINARY NUMBERS

Numbers in base two are called binary numbers at is made up two digit is 0 and 1

Converting base 10 numbers to base two number

We do this by dividing the base ten number repeatedly by 2 , writing down the remainder until we get to zero and reading the remainder upwards.
Example: (a) Write 810 to a number in base two
b) Express 85 in a binary number
c) Convert 107_{10} to a number in the base two
d) Convert $152_{\text {ten }}$ to a number in base two
e) Convert $3 / 8_{\text {ten }}$ to a binary fraction (bicimal)
f) Express $15.125{ }_{10}$ in binary notation

SOLUTION

(a)

2	8		
2	4	R	0
2	2	R	0
	0	R	1

$810=1000_{2}$
(b)

2	85		
2	42	R	1
2	21	R	0
2	10	R	1
2	5	R	0
2	2	R	1
	1	R	0
	0	R	1

(c) 2

(d) | 2 | 152 | | |
| :---: | :---: | :---: | :---: |
| 2 | 76 | R | 0 |
| 2 | 38 | R | 0 |

| 38 | R | 0 |
| :--- | :--- | :--- | :--- |

2	19	R	0
2	9	R	1
2	4	R	1
2	2	R	0
2	1	R	0
	0	R	1

(e)

2	3		
2	1	R	1
	0	R	1

$152_{\text {ten }}=10011000_{2}$

$$
3_{10}=11_{2}
$$

2	8		
2	4	R	0
2	2	R	0
2	1	R	0
2	0	R	1

$$
8_{10}=1000_{\mathrm{two}}
$$

First express 3 and 8 in binary, $\frac{3}{8} 10=11_{2} / 1000_{2}=0.011_{2}$
(f) $\quad 15.125=15 \frac{125}{1000}=15 \frac{1}{8}=\frac{121}{8} 10$

Exercise: Convert the following binary numbers.
(a) 72
(b) $\frac{3}{4}$
(c) 0.875
(d) 32

We express the given binary numbers as a sum of multiples of powers of two $2^{0}, 2^{1}, 2^{2}, 2^{3}$ etc.
Example: Convert (i) $101_{\text {two }}$ (ii) 10.1001_{2} (iii) 111_{2}
SOLUTION

```
i. }\quad10\mp@subsup{1}{2}{2}=1\times\mp@subsup{2}{}{2}+0\times\mp@subsup{2}{}{1}+1\times\mp@subsup{2}{}{0
    =4+0+1
    = 510..
```

