SCHEME OF WORK

1. Theory of Logarithms: Laws of Logarithms and application of Logarithmic equations and indices
2. Surds: Rational and Irrational numbers; basic operations with surds and conjugate of binomial surds
3. Application of surds to trigonometrical ratios. Draw the graphs of sine and cosine for angles $0^{0}<x<$ 360^{0}
4. Matrices and Determinant: Types, order, Notation, basic operations, transpose, determinants of 2×2 and 3×3 matrices, Inverse of 2×2 matrix and application to simultaneous equation
5. Linear and Quadratic Equations: Application, one linear-one quadratic, word problems leading to one linear-one quadratic
6. Surface areas and volume of spheres and hemispheres (solid and hollow sphere and hemisphere)
7. Longitude and Latitude: Identification of longitude and latitude, North and south, meridian, equator. Calculation of length of parallel of latitude.
8. Longitude and Latitude: Calculation of distance between two points on the latitude, longitude, time or speed of aircraft
9. Arithmetic Finance: Simple Interest, Compound Interest, Annuities, Depreciation and Amortization
10. Revision of the term's work

REFERENCE TEXTS:

- New General Mathematics for SS book 3 by J.B Channon
- Essential Mathematics for SS book 3
- Mathematics Exam Focus
- Waec and Jamb past Questions

WEEK 1

DATE:

THEORY OF LOGARITHMS AND LAWS OF LOGARITHMS

In general the logarithm of a number is the power to which the base must be raised in order to give that number. i.e if $y=n^{x}$, then $x=\log _{n} y$. Thus, logarithms of a number to base ten is the power to which 10 is raised in order to give that number i.e if $y=10^{x}$, then $x=\log _{10} y$. With this definition $\log _{10} 100=3$ since $10^{3}=1000$ and $\log _{10} 100=2$ since $10^{2}=100$.
Examples:

1. Express the following in logarithmic form
a) $2^{-6}=1 / 64$
b) $3^{5}=243$
c) $5^{3}=125$
d) $10^{4}=10,000$

Solutions

1. (a) $2^{-6}=1$

64
$\therefore \log _{2}(1 / 64)=-6$
(b) $3^{5}=243$
$\therefore \log _{3} 243=5$
(c) $5^{3}=125$
$\therefore \log _{5} 125=3$
(d) $10^{4}=10,000$
$\therefore \log _{10} 10000=4$
2. Express the following in index form
a) $\log _{2}(1 / 8)=-3$
(b) $\log _{10}(1 / 1000)=-2$
(c) $\log _{4} 64$
(d) $\log _{5} 625$
(e) $\log _{10} 1000$

Solutions
a) $\log _{2}(1 / 8)=-3$

Then $2^{-3}=1 / 8$
b) $\log _{10}(1 / 100)=-2$

Then $10^{-2}=1 / 100$
c) Let $\log _{4} 64=k$

Then $4^{k}=64$
Simplify $64 ; 4^{k}=4^{3}$
Then $\mathrm{k}=3$
d) Let $\log _{5} 625=m$

Then $5^{m}=625$

$$
5^{m}=5^{4}
$$

$\mathrm{m}=4$
e) Let $\log _{10} 1000=p$

Then $10^{p}=1000$
$10^{\mathrm{P}}=10^{3}$
$P=3$
Evaluation: Evaluate the following logarithms

1. $\log _{48}$
2. $\log _{6} 216$
3. $\log _{8} 0.0625$

Basic Laws of Logarithms

1. $\log m n=\log m+\log n$
2. $\log (m / n)=\log m-\log n$
3. $\log \mathrm{m}^{\mathrm{p}}=\mathrm{pLog} \mathrm{m}$
4. $\log 1=0$
5. $\log _{m} m=1$
6. $\log (1 / m)^{n}=\log m^{-n}=-n \log m$

Change of base

$\log _{\mathrm{m}} \mathrm{n}=\underline{\log }_{\mathrm{a}} \mathrm{n}$ Logam
Examples:

1. Express as logarithm of a single number $2 \log 3+\log 6$
solution:
$2 \log 3+\log 6$
$=\log 3^{2}+\log 6=\log 9+\log 6$
$=\log 9 \times 6=\log 54$
2. Simplify $\log 8 \div \log 4$

Solution:
$\log 8 \div \log 4=\underline{\log 2^{3}}=\underline{3 \log 2}=3 / 2$
$\log 2^{2} \quad 2 \log 2$
3. Evaluate $3 \log 2+\log 20-\log 1.6$

Solution
$=\log 2^{3}+\log 20-\log (16 / 10)$
$=\log 8+\log 20-\log (8 / 5)$
$=\log (8 \times 20 \div 8 / 5)$
$=\log (8 \times 20 \times 5 \div 8)$
$=\log 100=\log 10^{2}=2 \log 10=2$

Evaluation:

1. Simplify the following: a. $1 / 2 \log 25$ b. $1+\log 3 \mathrm{c} . \log 8+\log 4$
2. Evaluate $\log 45-\log 9+\log 20$
3. Given that $\log 2=0.3010, \log 3=0.4771$ and $\log 7=0.8451$, evaluate a. $\log 42$ b. $\log 35$
4. Solve $2^{2 x}-10 \times 2^{x}+16=0$

Further Application of Logarithms using tables:

Examples:
Use the tables to find the log of:
(a) 37
(b) 3900 to base ten

Solutions

1. $37=3.7 \times 10$
$=3.7 \times 10^{1}$ (standard form)
$=10^{0.5682+1} \times 10^{1}$ (from table)
$=10^{1.5682}$
Hence $\log _{1037}=1.5682$
2. $3900=3.9 \times 1000$
$=3.9 \times 10^{3}$ (standard form)
$=10^{0.5911} \times 10^{3}$ (from table)
$=100.5911+3$
$=10^{3.5911}$
Therefore $\log _{10} 3900=3.5911$
Evaluate the following using...
