SUBJECT: FURTHER MATHEMATICS

SCHEME OF WORK

WEEK TOPIC

1. Differentiation: Limits of Function and First Principle, Differentiation of Polynomial
2. Differentiation (Continued): Rules of Differentiation
3. Differentiation of Transcendents: Derivative of Trigonometric Functions and Exponential Functions.
4. Application of Differentiation: Rate of Change, Equation of Motion, Maximum and Minimum Points and Values of Functions.
5. Conic Sections: Equation of Circles, General Equation of Circles, Finding Centre and Radius, Equation and Length of Tangents to a Circle.
6. Conic Sections: The Parabola, Hyperbola and Ellipse
7. Review of First Half Term
8. Statistics Probability: Sample Space, Event Space, Combination of Events, Independents and Dependent Events.
9. Permutation and Combination
10. Dynamics: Newton's Laws of Motion
11. Work, Energy, Power, Impulse and Momentum
12. Revision and Examination.

REFERENCES

Further Mathematics Project 2 and 3.

WEEK ONE

TOPIC : LIMITS OF FUNCTIONS AND DIFFERENTIATION FROM THE FIRST PRINCIPLE
The followings are the properties of limits:
(i) $\operatorname{limk}=\mathrm{kie}$
$x^{2}-a$
The limit of a constant is the constant itself
(ii) $\lim \left[\mathrm{f}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})+\mathrm{f}_{3(x)}+\ldots \mathrm{f}_{\mathrm{n}}(\mathrm{x})\right]$
$=\lim f_{1}(x)+\lim _{2}(x)+\lim f_{3}(x)+\operatorname{limf}_{n}(x)$
$x \rightarrow a \quad x \rightarrow a \quad x \rightarrow x a t$
i.e

The limit of the sum of a finite number of functions is equal to the sum of their respective limits
$\lim \left[\mathrm{f}_{1}(\mathrm{x})-\mathrm{f}_{2}(\mathrm{x})\right]=\operatorname{limf}_{1}(\mathrm{x})-\operatorname{limf}_{2}(\mathrm{x})$
$x \rightarrow a \quad x \rightarrow a \quad x \rightarrow x a \rightarrow$
i.e

The limit of the difference of two functions is equal to the difference of their limits.
(iii) $\lim \left[f_{1}(x) f_{2}(x) f_{3}(x)+\ldots . . f_{n}(x)\right]$ $\mathrm{xa} \rightarrow$
$=\lim f_{1}(x) \lim f_{2}(x) \lim f_{3}(x) \lim f(x)$
$x \rightarrow a \quad x \rightarrow a \quad x \rightarrow x a \rightarrow$
i.e

The limit of the product of infinite number of functions is equal to the product of their respective limits.
(iv) $\mathrm{x} \quad \mathrm{a}\left[\frac{f(x)}{f(x)}=\underline{\lim \mathrm{f}_{1}(\mathrm{x})}\right.$
$\lim f_{2}(x)$
Provided $\lim \mathrm{f}_{2}(\mathrm{x}) \neq 0$ i.e
The limit of the quotient function is equal to the quotient of their limits provided the limit of the divisor is not equal to zero
(v) $\lim k f(x)=k \lim f(x)$
$x \rightarrow a x \rightarrow a$
i.e

Limit of the product of a constant and a function is equal to the product of the constant and the limit of the function

Example 1

Evaluate $\lim \left(7-2 x+5 x^{2}-4 x^{3}\right)$
Solution
$\lim \left\{7-2 x+5 x^{2}-4 x^{3}\right)$
$\mathrm{x} \rightarrow \mathrm{a}$
$=\lim 7-2 \lim x+5 \lim x^{2}-4 \lim x$
$\mathrm{x} \rightarrow \mathrm{ax} \rightarrow \mathrm{ax} \rightarrow \mathrm{a} \quad \mathrm{x} \rightarrow \mathrm{a}$
$=7-0+0=7$

Example 2

$\operatorname{Lim} \frac{x^{2}+5 x+9}{x}$
$x-2 x^{2}-3 x+15$
Solution
$\lim _{x \rightarrow 0} \frac{x^{2}+5 x+9=\lim x^{2}+5 x+9}{0 \quad 2 x^{2}-3 x+15 \lim 2 x^{2}-3 x+15}$
$\lim x^{2}+5 \lim x+\lim 9$
$\mathrm{x} \rightarrow 0 \quad \mathrm{x} \rightarrow 0 \quad \mathrm{x} \rightarrow 0$
$2 \lim x^{2}-3 \lim x+\lim 15$
$x \rightarrow 0 \quad x \rightarrow 0 \quad x-0$
$=\frac{0+0+9}{0-0+15}$
$=\frac{9}{15}$
$=\frac{3}{5}$

Example

Evaluate $\lim x^{2}-25$
$x \rightarrow 5 \quad x-5$

Solution

$\operatorname{Lim}^{2}-25=\underline{\lim ^{(x+5)(x-5)}} \underset{x-5}{x}=$
$x \rightarrow 5 x-5$
$=\lim (x+5)$
$x-5$
$=\lim x+\lim 5$
$x-5 x-5$
$=5+5$
$=10$

Example

Evaluate $\lim 3 x^{3}+2 x^{2}+x+1$
$x-5 \quad x^{3}+2 x+5$

Solution

We know that $\lim \frac{1}{x}=0$
$\mathrm{x}-0$
$\lim 3 x^{3}+2 x^{2}+x+1$
$x-0 x^{3}+2 x+5$
$x^{3}\left(3+\frac{2}{x}+\frac{1}{2}+\frac{1}{3}\right)$
$\lim x \quad x=0$
$x \perp x^{3}\left({ }^{2} \frac{t^{5}}{2}\right)_{3}$
$\lim 3+2 \lim \frac{1}{x}+\lim \frac{1}{2}+\lim \frac{3}{3}$
$=\frac{x-0 x-0 x-0 x-0}{\lim 1+2 \lim \frac{1}{x}+\lim \frac{1}{2}+5 \lim }$
$x-0 x-0 x-0 x-0$
$=3+0+0+0$
$1+0+0$
$=\frac{3}{1}$
$=3$

EVALUATION

Evaluate lim -> $4 x^{3}+4 x 6$
Evaluastelim $x->-2 x+6 / 2 x+4$

Differentiation From first Principle

The technique adopted in unit 11.3 in finding the derivative of a function from the consideration of the limiting value is called differentiation from first principle.

Example

Find the derivative of $f(x)=x^{2}$ from first principle.

Solution

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \\
& \mathrm{f}(\mathrm{x}+\Delta)=(\mathrm{x}+\mathrm{x})^{2} \\
& =\mathrm{x}^{2}+2 \mathrm{x} \Delta \mathrm{x}+(\Delta)^{2} \\
& \mathrm{f}(\mathrm{x}+\Delta)-\mathrm{f}(\mathrm{x})=(\mathrm{x}+\mathrm{x})^{2}-\mathrm{x}^{2} \\
& =\mathrm{x}^{2}+2 \mathrm{x} \Delta+(\Delta)^{2}-\mathrm{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(x+\Delta x)-f(x) \\
& =2 \mathrm{x} \Delta \mathrm{x}+(\mathrm{\Delta})^{2} \\
& \lim \frac{\mathrm{fx}(x+\Delta x)-f(x)}{\Delta x}=2 \mathrm{x} \\
& \Delta \rightarrow 0 \\
\therefore \mathrm{f}^{1}(\mathrm{x})= & 2 \mathrm{x}
\end{aligned}
$$

Example

Find the derivative of $y=x^{3}$ from first principle Solution

