FIRST TERM E- LEARNING NOTES

SUBJECT: FURTHER MATHEMATICS
CLASS: SS1
SCHEME OF WORK

WEEK	TOPIC
1	Indices: Basic Laws \& Application of indices
2	Indicial and Exponential Equations
3	Logarithms - Laws and application
4	General review of basic concept of set theory
5	Operation of sets and Venn diagrams
6	Review of First Half Terms Lesson \& Periodic Test
7	Binary operations and basic laws of binary operations (i) Definition (ii) Solution of simple problems on binary operations (iii) Closure, commutative, associative and distributive laws
8	Binary operations continues: (i) Solution to problems on laws of binary operations (ii) Identity and inverse elements of a given binary operations (iii) Addition and multiplication tables for binary operations
9	Surds: (i) Definition of surds (ii) Rules and manipulation of surds (iii) Rationalization of surds at the denominator and equality of surds.
10	Measures of central tendency: (i) Mean, Median and Mode of grouped and ungrouped data (ii) Estimation of mode from the histogram of a grouped data.
11	Revision
12	Examination

REFERENCE(S)

- Further Mathematics project 1 by Tuttuh Adegun et al
- New General Mathematics for SSS1, SSS 2 and SSS 3 by M. F. Macrae et al

WEEK ONE

TOPIC: INDICES

CONTENT

- Basic Concept of Laws of Indices
- Application of Laws of Indices

Basic Concept of Laws of Indices

A number of the form $\boldsymbol{a}^{\boldsymbol{m}}$ where a is a real number, \boldsymbol{a} is multiplied by itself \boldsymbol{m} times, The number \mathbf{a} is called the base and the super script \mathbf{m} is called the index (plural indices) or exponent.

1. $\quad a^{m} \times a^{n}=a^{m+n}$

-Multiplication law

Example: $p^{3} \times p^{2}=(p \times p \times p) \times(p \times p)=p^{5}$
Or $p^{3} \times p^{2}=p^{3+2}=p^{5}$
2. $\quad a^{m} \div a^{n}=a^{m-n}$

Division law Example: $p^{6} \div p^{4}=p^{6-4}=p^{2}$
3. $\quad\left(a^{m}\right)^{n}=a^{m n}$

Power law
Example: $\left(p^{3}\right)^{2}=p^{3} \times p^{3}=p^{3+3}=p^{6}$
Or $p^{3 \times 2}=p^{6}$
4. $\quad a^{m} \div a^{m}=a^{m-m}=a^{0}=1$
$a^{m} \div a^{m}=a^{m} / a^{m}=a^{0}=1$
$a^{0}=1$
.Zero Index
Note : Any number raised to power of zero is 1
Example: $3^{\circ}=1, \quad c^{0}=1, \quad y^{0}=1$
5. (ab) $)^{m}=\mathbf{a}^{m} \mathbf{b}^{m} \quad-\cdots--------$ Product power law
e.g. $(2 x y)^{2}=4 x^{2} y^{2}$
6. $a^{-m}=1 / a^{m}$

Negative Index
Example: $2^{-1}=1 / 2$, and $3^{-2}=1 / 3^{2}=1 / 9$
7. $\quad a^{1 / n}={ }^{n} \sqrt{ }$ a ------------- Root power law

Example: $9^{1 / 2}=\sqrt{ } 9=3$

$$
27^{1 / 3}=\sqrt[3]{ } 27=3 \text { ie }(3)^{3}=3
$$

Example: $27^{2 / 3}=3 \sqrt{ } 27=3^{2}=9$.

Evaluation

1. $27^{5 / 3}$
2. 1000000000°
3. $2^{x-1} \times 2^{2 x+2}$

Application of Laws of Indices

Examples

Solve the following...

