FIRST TERM E- LEARNING NOTES

SUBJECT: FURTHER MATHEMATICS

SCHEME OF WORK

WEEK	TOPIC
1	Indices: Basic Laws & Application of indices
2	Indicial and Exponential Equations
3	Logarithms - Laws and application
4	General review of basic concept of set theory
5	Operation of sets and Venn diagrams
6	Review of First Half Terms Lesson & Periodic Test
7	Binary operations and basic laws of binary operations (i) Definition (ii) Solution of simple problems on binary operations (iii) Closure, commutative, associative and distributive laws
8	Binary operations continues: (i) Solution to problems on laws of binary operations (ii) Identity and inverse elements of a given binary operations (iii) Addition and multiplication tables for binary operations
9	Surds: (i) Definition of surds (ii) Rules and manipulation of surds (iii) Rationalization of surds at the denominator and equality of surds.
10	Measures of central tendency: (i) Mean, Median and Mode of grouped and ungrouped data (ii) Estimation of mode from the histogram of a grouped data.
11	Revision
12	Examination

REFERENCE(S)

- Further Mathematics project 1 by Tuttuh Adegun et al
 New General Mathematics for SSS1, SSS 2 and SSS 3 by M. F. Macrae et al

CLASS: SS1

WEEK ONE

TOPIC: INDICES

CONTENT

- Basic Concept of Laws of Indices
- Application of Laws of Indices

Basic Concept of Laws of Indices

A number of the form a^m where a is a real number, a is multiplied by itself m times,

The number **a** is called the **base** and the super script **m** is called the **index** (plural indices) or exponent.

1.
$$a^m x a^n = a^{m+n}$$
 ------Multiplication law

Example:
$$p^3 \times p^2 = (p \times p \times p) \times (p \times p) = p^5$$

Or $p^3 \times p^2 = p^{3+2} = p^5$

2.
$$a^m \div a^n = a^{m-n}$$
 ------Division law Example: $p^6 \div p^4 = p^{6-4} = p^2$

3. (a m)ⁿ = a^{mn} -------Power law
Example:
$$(p^3)^2 = p^3 \times p^3 = p^{3+3} = p^6$$

Or $p^{3\times 2} = p^6$

4.
$$a^m \div a^m = a^{m-m} = a^0 = 1$$

 $a^m \div a^m = a^m/a^m = a^0 = 1$
 $a^0 = 1$ Zero Index

Note: Any number raised to power of zero is 1

Example:
$$3^{\circ} = 1$$
, $c^{\circ} = 1$, $y^{\circ} = 1$

5. (ab)^m =
$$a^mb^m$$
 ------Product power law e.g. $(2xy)^2 = 4x^2y^2$

6.
$$a^{-m} = 1/a^m$$
 ------ Negative Index Example: $2^{-1} = \frac{1}{2}$, and $3^{-2} = \frac{1}{3} = \frac{1}{9}$

7.
$$a^{1/n} = {}^{n}\sqrt{a}$$
 ------ Root power law Example: $9^{\frac{1}{2}} = \sqrt{9} = 3$ $27^{\frac{1}{3}} = {}^{3}\sqrt{27} = 3$ ie $(3)^{3} = 3$

8.
$$a^{m/n} = (a^{1/n})^m = ({}^n\sqrt{a})^m$$
 ------Fraction Index or $a^{m/n} = (a^m)^{1/n} = ({}^n\sqrt{a})^m$

Example:
$$27^{2/3} = 3\sqrt{27} = 3^2 = 9$$
.

Evaluation

1.
$$27^{5/3}$$
 2. 1000000000^0 3. $2^{x-1} \times 2^{2x+2}$

Application of Laws of Indices

Examples

Solve the following...