FIRST TERM E -LEARNING NOTE

SUBJECT: FURTHER MATHEMATICS
CLASS: SS2
FIRST TERM SCHEME OF WORK

WEEK	TOPIC
1	Finding quadratic equation with given sum and product of roots, conditions for equal roots, real roots and no root
2	Tangents and Normals to Curves
3	Polynomials ;definition, basic operations $+, \mathrm{x},-, \quad ;--$
4	Polynomials (Continued) factorization
5	Cubic Equation, roots of cubic equations
6	Review and Test
7	Logical Reasoning ; fundamental issues and definitions and theorem proving cosine,tangent,secant, cosecant, cotangent)
8	Relationship between graph of trigonometric ratios such as sin x and sin $2 \mathrm{x}, \mathrm{graphs}$ of $\mathrm{y}=\mathrm{a}$ sin (bx) $+\mathrm{c}, \mathrm{y}=\mathrm{a} \mathrm{cos} \mathrm{(bx)}+\mathrm{c}, \mathrm{y}=\mathrm{a}$ tan (bx) +c
9	Graphs of inverse by ratio and equation of simpletrgonometric identities
10	Revision
11	

REFERENCES

> Further Mathematics Project 1 by TuttuhAdegun
> Further Mathematics Project 2 by TuttuhAdegun
> Additional Mathematics by Godman

WEEK 1
TOPIC: SOLUTION TO QUADRATIC EQUATION
FINDING QUADRATIC EQUATION GIVEN SUM AND PRODUCT OF ROOTS CONDITION FOR EQUAL ROOTS, REAL ROOTS AND NO ROOT

We recall that if $a x^{2}+b x+c=0$, where $a, ~ a$ and c are constants such that $a \neq 0$, then, $\mathrm{x}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ or $\mathrm{x}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

Suppose we represent these distinct roots by a and $\boldsymbol{\beta}$; thus:
$a=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
and
$\beta \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
We may also put $D=b^{2}-4 a c$, so that
$\mathrm{a}=\frac{-b+\sqrt{D}}{2 a}$
$\beta=\frac{-b-\sqrt{D}}{2 a}$

Sum of roots

$a+\beta=\frac{(-b+\sqrt{D})}{2 a}+\frac{(-b-\sqrt{D})}{2 a}$
$=\frac{-2}{2 b}$
$=\frac{-b}{a}$
Products of roots
$\mathrm{a} \beta=\frac{(-b+\sqrt{D)}(-b-\sqrt{D})}{2 a \times 2 a}$
$: a \beta=\frac{b^{2}-D}{4 a^{2}}$
$=b^{2}-\frac{\left(b^{2}-4 a c\right)}{4 a^{2}}$
$=\frac{4 \mathrm{ac}}{4 \mathrm{a}^{2}}$
$=\frac{c}{a}$
Hence, if $a x^{2}+b x+c=0$, where a, b and c are constants anda $\neq 0$ then $a+\beta=\frac{-b}{a}$,
$\mathrm{a} \beta=\frac{c}{a}$, we recall from 5.3 that by the method of factorization if
$x^{2}+x-42=0$
then $(x-6)(x-7)=0$
Hence the roots of the equation are 6 and -7. In general, if a quadratic equation factorizes into
$(x-a)(x-\beta)=0$
then a and β must be the roots of that equation.
The general quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ can also be written as:
$\mathrm{x}^{2}+\frac{b x}{a}+\frac{c}{a}=0$
If the roots of the equation are a and $\boldsymbol{\beta}$ then the above equation can be written as:
$(x-a)(x-\beta)=0$
$x^{2}-(a-\beta) x+a \beta=0$
By comparing coefficients in equations (1) and (2)
$-(a+\beta)=\frac{b}{a}$
$: a+\beta=\frac{-b}{a}$
anda $\beta=\frac{c}{d}$
The above consideration gives rise to two problems:
(a) Given a quadratic equation, we can find the sum and product of the roots.
(b) Given the roots, we can formulate the corresponding quadratic equation.

The quadratic equation whose roots are α and β is
$x^{2}-(a+\beta) x+a \beta=0$
Find the sum and product of the roots of each of the following quadratic equations:
(a) $2 x^{2}+3 x-1=0$
(b) $3 x^{2}-5 x-2=0$
(c) $x^{2}-4 x-3=0$
(d) $1 / 2 x^{2}-3 x-1=0$

Solution

(a) $2 x^{2}+3 x-1=0$
$a=2 ; b=3 ; c=-1$
Let a and β be the roots of the equation, then
$a+\beta=\frac{-b}{a}=\frac{-3}{2}$
a $\beta=\frac{c}{a}=\frac{-1}{2}$
(b) $3 x^{2}-5 x-2=0$
$a=3 ; b=-5 ; c=-2$
Let a and β be the root of the equation, then
$a+\beta=\frac{-b}{a}=\frac{5}{3}$
a $\beta=\frac{c}{a}=\frac{-2}{3}$
(c) $x^{2}-4 x-3=0$
$a=1 ; b=4 ; c=-3$
Let a and β be the root of the equation, then
$a+\beta=\frac{-b}{a}=\frac{4}{1}$
a $\beta=\frac{c}{a}=-3$
(d) $1 / 2 x^{2}-3 x-1=0$
$a=1 / 2, b=-3, c=-1$
Let α and β be the root of the equation, then
$a+\beta=\frac{-b}{a}=\frac{(3)}{\frac{1}{2}}=6$
$\alpha \beta=\frac{c}{a}=\frac{-1}{\frac{1}{2}}=-2$
Find the quadratic equation whose roots are:
(a) 3 and -2
(b) $1 / 2$ and 5
(c) -1 and 8
(d) $3 / 4$ and $1 / 2$

Solution

The quadratic equation whose roots are...

