FIRST TERM E -LEARNING NOTE

SUBJECT: FURTHER MATHEMATICS

FIRST TERM SCHEME OF WORK

WEEK	TOPIC
1	Finding quadratic equation with given sum and product of roots, conditions for
	equal roots, real roots and no root
2	Tangents and Normals to Curves
3	Polynomials ;definition, basic operations + , x , - , ;
4	Polynomials (Continued) factorization
5	Cubic Equation , roots of cubic equations
6	Review and Test
7	Logical Reasoning; fundamental issues and definitions and theorem proving
8	Trigonometric Function , six trig functions of angles of any magnitude (sine,
	cosine,tangent,secant, cosecant, cotangent)
9	Relationship between graph of trigonometric ratios such as sin x and sin 2x, graphs
	of $y = a \sin(bx) + c$, $y = a \cos(bx) + c$, $y = a \tan(bx) + c$
10	Graphs of inverse by ratio and equation of simpletrgonometric identities
11	Revision

REFERENCES

- Further Mathematics Project 1 by TuttuhAdegunFurther Mathematics Project 2 by TuttuhAdegun
- Additional Mathematics by Godman

CLASS: SS2

WEEK 1

TOPIC: SOLUTION TO QUADRATIC EQUATION FINDING QUADRATIC EQUATION GIVEN SUM AND PRODUCT OF ROOTS CONDITION FOR EQUAL ROOTS, REAL ROOTS AND NO ROOT

We recall that if $ax^2 + bx + c = 0$, where a, a and c are constants such that $a \ne 0$, then, $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ or $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Suppose we represent these distinct roots by α and β ; thus:

$$a = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
and
$$\beta \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

We may also put $D = b^2 - 4ac$, so that

$$a = \frac{-b + \sqrt{D}}{2a}$$

$$\beta = \frac{-b - \sqrt{D}}{2a}$$

Sum of roots

$$0 + \beta = \frac{(-b + \sqrt{D})}{2a} + \frac{(-b - \sqrt{D})}{2a}$$
$$= \frac{-2}{2b}$$
$$= \frac{-b}{a}$$

Products of roots

a
$$\beta = \frac{(-b+\sqrt{D})(-b-\sqrt{D})}{2a \times 2a}$$

$$\exists a \beta = \frac{b^2 - D}{4a^2}$$

$$= b^2 - (\frac{b^2 - 4ac}{4a^2})$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{c}{a}$$

Hence, if $ax^2 + bx + c = 0$, where a, b and c are constants and $a \neq 0$ then $a + \beta = \frac{-b}{a}$, $a\beta = \frac{c}{a}$, we recall from 5.3 that by the method of factorization if $x^2 + x - 42 = 0$ then (x - 6)(x - 7) = 0

Hence the roots of the equation are 6 and -7. In general, if a quadratic equation factorizes into

$$(x-a)(x-\beta)=0$$

then α and β must be the roots of that equation.

The general quadratic equation $ax^2 + bx + c = 0$ can also be written as: $x^2 + \frac{bx}{a} + \frac{c}{a} = 0$...(1)

If the roots of the equation are α and β then the above equation can be written as:

$$(x-a)(x-\beta) = 0$$

 $x^2 - (a-\beta)x + a\beta = 0$ ---(2
By comparing coefficients in equations (1) and (2)
 $-(a+\beta) = \frac{b}{a}$

$$: α + β = \frac{-b}{a}$$
and $aβ = \frac{c}{d}$

The above consideration gives rise to two problems:

- (a) Given a quadratic equation, we can find the sum and product of the roots.
- (b) Given the roots, we can formulate the corresponding quadratic equation.

The quadratic equation whose roots are α and β is

$$x^2 - (\alpha + \beta) x + \alpha \beta = 0$$

Find the sum and product of the roots of each of the following quadratic equations:

(a)
$$2x^2 + 3x - 1 = 0$$

(b)
$$3x^2 - 5x - 2 = 0$$

(c)
$$x^2 - 4x - 3 = 0$$

(d)
$$\frac{1}{2}x^2 - 3x - 1 = 0$$

Solution

(a)
$$2x^2 + 3x - 1 = 0$$

$$a = 2$$
; $b = 3$; $c = -1$

Let α and β be the roots of the equation, then

$$a + \beta = \frac{-b}{a} = \frac{-3}{2}$$
 $a \beta = \frac{c}{a} = \frac{-1}{2}$

$$\alpha \beta = \frac{c}{a} = \frac{-1}{2}$$

(b)
$$3x^2 - 5x - 2 = 0$$

$$a = 3$$
; $b = -5$; $c = -2$

Let α and β be the root of the equation, then

a +
$$\beta = \frac{-b}{a} = \frac{5}{3}$$

a $\beta = \frac{c}{a} = \frac{-2}{3}$
(c) $x^2 - 4x - 3 = 0$

$$\alpha \beta = \frac{c}{a} = \frac{-2}{3}$$

(c)
$$x^2 - 4x - 3 = 0$$

Let α and β be the root of the equation, then

$$a + \beta = \frac{-b}{a} = \frac{4}{1}$$

$$a \beta = \frac{c}{a} = -3$$

$$a \beta = \frac{c}{a} = -3$$

(d)
$$\frac{1}{2}x^2 - 3x - 1 = 0$$

$$a = \frac{1}{2}$$
, $b = -3$, $c = -1$

Let α and β be the root of the equation, then

$$a + \beta = \frac{-\dot{b}}{a} = \frac{(3)}{\frac{1}{2}} = 6$$

$$\alpha \beta = \frac{c}{a} = \frac{-1}{\frac{1}{2}} = -2$$

Find the quadratic equation whose roots are:

$$(d)^{3/4}$$
 and $1/2$

Solution

The quadratic equation whose roots are...