SCHEME OF WORK

WEEK TOPIC

1. REVISION
2. PROBABILITY DISTRIBUTION

Binomial Probability Distribution
Poisson Probability Distribution
3. PROBABILITY DISTRIBUTION (CONTINUATION)

Normal Distribution
Properties and Area
z - Scores Application.
4. STATICS

Definition of Concepts
Resultant of Two Forces
Components Resolution of Forces
5. STATICS - CONTINUATION

Definition of Equilibrium and Condition of Equilibrium of Rigid Body
Application of the Condition to Solve Problems
Lami'sTheorem and Application
6. REVIEW OF WEEK 1 - 5
7. STATICS - CONTINUATION.

Definition of Moment of a Force
Principles of Moments
Application of the Principle in Solving Problems
8 FRICTION.
Basic Concept
Coefficient of Friction
Forces Actingon a body.

WEEK TWO

PROBABILITY DISTRIBUTION

- BINOMIAL PROBABILITY DISTRIBUTION
- POISSON PROBABILITY DISTRIBUTON

Probability distribution deals with theoretical probability model based on the randomness of certain natural occurrences. The binomial and Poisson distribution are discrete distribution

BINOMIAL DISTRIBUTION

This arises from a repeated random experiment which has two possible outcomes.
The two possible outcomes of the random experiment are usually called success and failure.
Prob(success) $=P$, Prob (failure) $=q$
Since the two events are complementary, hence $p+q=1$ or $p=1-q, q=1-p$
The probability of success or failure of an event is the same for each trials and does not influence the probability of success or failure of another trial of the same event.
:. Binomial distribution of n trails and r required outcome(s) is defined as :

$$
\begin{aligned}
& \mathrm{pr}(\mathrm{x}=\mathrm{r})={ }^{n} C_{r} \mathrm{Pr}^{n-r} \\
& \text { when }{ }^{n} C_{r}=\mathrm{n}!
\end{aligned}
$$

($n-r$)! r!.
The binomial distribution is suitable when the number of trials is not too large.

Example:

1. Find the probability that when two fair coins are tossed 5 times a head and a tail appear three times.

Solution:
Two fair coins $=(H T, T H, T T, H H)=4$
$\operatorname{Prob}(a$ head and a tail) $=2 / 4=1 / 2$
i.e $p=1 / 2, q=1 / 2 \quad(p+q=1)$
$n=5, r=3$.
$\therefore P(x=r)={ }^{n} C_{r p}{ }^{r} q^{n-r}$
$p(x=3)={ }^{5} C_{3}(1 / 2)^{3}(1 / 2)^{5-3}$
$p(x=3)=10 \times 1 / 8 \times 1 / 4=10 / 32=5 / 16$
$p(x=3)=0.3125$.
2. It is known that 2 out of every 5 cigarettes smokers is a village have cancer of the lungs. Find the probability that out of a random sample of 8 smokers from the village, 5 will have cancer of the lungs.

Solution

$\operatorname{Prob}($ a smoker has cancer) $=2 / 5$ i.e $p=2 / 5$
$\operatorname{Prob}($ a smoker doesn't have cancer) $=1-2 / 5=3 / 5$
$\therefore \mathrm{q}=3 / 5$
$\mathrm{n}=8, \quad \mathrm{r}=5$
$\operatorname{Prob}(x=-5)={ }^{8} C_{5}(2 / 5)^{5}(3 / 5)^{3}$
$=56 \times \frac{32}{3125} \times \frac{27}{125}=\frac{48384}{390625}$
$\operatorname{Prob}(x=5)=0.124$.

EVALUATION

Find the probability that when a fair six-faced die is tossed six times, a prime number appears exactly four times.

POISSON DISTRIBUTION: The Poisson distribution is more suitable when the number of trials is very large and probability of successes is small. It is defined as:

$$
\operatorname{Pr}(x)=\underline{\lambda^{x} e^{-\lambda}}, x=0,1,2,3,
$$

x !

```
Where \lambda = np
    e=2.718
```

$\mathrm{P}=$ probability of success, $\mathrm{n}=$ number of trials.

Example:

If 8% of articles in a large consignment are defective, what is the chance that 30 articles selected at random will contain fewer than 3 defective articles?

Solution

$\mathrm{P}=8 / 100=0.08, \mathrm{n}=30$
$\therefore \quad \lambda=n p=0.08 \times 30=2.4$.

$\operatorname{Prob}(\mathrm{x}=0)=\frac{2.4^{\circ} \times \mathrm{e}^{-2.4}}{0!}=1 \mathrm{x}^{\mathrm{e}-2.4}$
$\operatorname{Prob}(x=1)=\frac{2.4^{\circ} \times \mathrm{e}^{-2.4}}{1!}=2.4 \mathrm{xe}^{-2.4}$
$\operatorname{Prob}(x=2)=\frac{2.4^{\circ} \times \mathrm{e}^{-2.4}}{2!}=2.88 \mathrm{xe}^{-2.4}$
$\operatorname{Prob}(\mathrm{x}<3)=\mathrm{e}^{-2.4}+2.4 \mathrm{xe}^{-2.4}+2.88 \mathrm{xe}^{-2.4}$
$=e^{-2.4}(1+2.4+2.88)$
$=e^{-2.4} \mathrm{x} \quad 6.28$.

EVALUATION

The probability that a person gets a reaction from a new drug on the market is 0.001 . If 200 people are treated with this drug. Find approximately, the probability that:
(i) exactly three persons will get a reaction
(ii) more than two person will get a reaction

Properties of Binomial and Poisson Distribution.

Binomial

It assigns probability to....

