SUBJECT: FURTHER MATHEMATICS

CLASS: SS1
SCHEME OF WORK

WEEK	TOPIC
1	Arithmetic Progression (AP)
2	Geometric Progression (GP)
3	Linear inequalities in one variable
4	Inequalities in two variables (Graph of inequalities)
5	Introduction to the concept of functions.
6	Review of half term work.
7	Functions (one - to - one, onto, composite and inverse functions)
8	Trigonometric ratio: Graph of Sine, Cosine and tangent of angles, deviation of trigonometric ratio of special angles $\left(30^{\circ}, 45^{\circ}\right.$ and $\left.60^{\circ}\right)$. Application of trigonometric ratios.
9	Logical reasoning: Simple True and False statement, Negation, Converse and Contra positive of statement,
10	Logical reasoning continues: Compound statement, connectives and their symbols, conditional statements and symbols.
11	Revision of Second Term's lesson
12	Examination

REFERECES

> FutherMaths Project 1 and 2 by TuttuhAdegun (main text).
Additional Mathematics by Godman
> Further Mathematics by E. Egbe et al.

WEEK ONE

DATE
TOPIC: SEQUENCE \& SERIES

CONTENT

- Sequence and series
- Arithmetic Progression (AP)
- Arithmetic Mean
- Sum of terms in an AP

Sequence \& Series

A sequence is a pattern of numbers arranged in a particular order. Each of the number in the sequence is called a term. The terms are related to one another according to a well defined rule.

Consider the sequence $1,4,7,10,13 \ldots ., 1$ is the first term, $\left(T_{1}\right) 4$ is the second term $\left(T_{2}\right), 7$ is the third term $\left(T_{3}\right)$.
The sum of the terms in a sequence is regarded as series. The series of the above sequence is
$1+4+7+10+13=35$

The nth term of a Sequence

The nth term of a sequence whose rule is stated may be represented by $T_{n S O}$ that T_{1}, T_{2}, T_{3} etc represent the first term, second term, third term ... etc respectively.
Consider the sequence $5,9,13,17,21$
$\mathrm{T}_{1}=5+4(0)$
$\mathrm{T}_{2}=5+4(1)$
$\mathrm{T}_{3}=5+4$ (2)
$\mathrm{T}_{4}=5+4(3)$
$T_{n}=5+4(n-1)$
$T_{n}=5+4 n-4=4 n+1$
when $\mathrm{n}=30$
$\mathrm{T}_{30}=4(30)+1$
$\mathrm{T}_{30}=121$
Find the nth term of these sequences:
(i) $3,5,7,9 \ldots \ldots 2 n+1$
(ii) $0,1,4,9$. $(\mathrm{n}-1)^{2}$
(iii) $1 / 3,3 / 4,1,7 / 6$ \qquad

Examples

Write down the first four terms of the sequence whose general term is given by:
(i) $\mathrm{T}_{\mathrm{n}}=\underline{n+1}$
(ii) $T_{n}=5 \times(1 / 2)^{n-2}$
$3 n+2$

Solution

```
i. \(\quad T_{n}=\frac{n+1}{3 n+2}\)
\[
T_{1}=\frac{1+1}{3(1)+2}=2 / 5
\]
\[
\mathrm{T}_{2}=\frac{2+1}{3(2)+2} \quad=3 / 8
\]
\[
T_{3}=\frac{3+1}{3(3)+2}=4 / 11
\]
\[
3(4)+2
\]
The sequence is \(2 / 5,3 / 8,4 / 11,5 / 14\)
```


Evaluation

Find the first term of the sequence whose general term is given by
(i) $50-(1 / 2)^{n}$
(ii) $2+3 / 2^{(n+1)}$

Arithmetic Progression (A.P) or Linear Sequence

An arithmetic progression (A.P) is generated by adding or subtracting a constant number to a preceding term to get a term. This constant number is called the common difference designated by the letter d . The first term is designated by a.

Ex: A.P

$$
\begin{aligned}
& 61 / 2,5,31 / 2,2 \ldots \\
& -2,-3 / 4,1 / 2,13 / 4
\end{aligned}
$$

d (common difference)

$$
\left\lvert\, \begin{aligned}
& \mathrm{a} \text { (first term) } \\
& 61 / 2 \\
& -2
\end{aligned}\right.
$$

T_{1}	$\mathrm{~T}_{2}$		$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{5}$	
		a	$\mathrm{a}+\mathrm{d}$	$\mathrm{a}+2 \mathrm{~d}$	$\mathrm{a}+3 \mathrm{~d}$	$\mathrm{a}+4 \mathrm{~d}$

So for any A.P, the nth term $\left(T_{n}=U_{n}\right)$ is given by

$$
\begin{array}{ll}
T_{n}=U_{n}=a+(n-1) d . & T_{n}=U_{n}=n \text {th term } \\
& a=\text { first term } \\
& d=\text { common difference } \\
& n=\text { no of terms }
\end{array}
$$

Examples

1. What is the $10^{\text {th }}$ term of the sequence $10,6,2,-4 \ldots$. .
2. Find the term of the A.P $3 \frac{1}{2}, 7,10 \frac{1}{2} \ldots$. Which is 77 .
3. The fist term of an A.P is 3 and the $8^{\text {th }}$ term is 31 . Find the common difference.

Solution

(1.) The A.P $=10,6,2,-4$

$$
a=10, d=6-10=-4, n=10
$$

$$
T_{n}=a+(n-1) d
$$

$$
\mathrm{T}_{10}=10+(10-1)(-4)
$$

$$
\mathrm{T}_{10}=10+9(-4)=10-36
$$

$$
\mathrm{T}_{10}=-26
$$

(2.) A.P $=3 \frac{1}{2}, 7,101 / 2$ 77
$a=31 / 2, d=7-31 / 2=31 / 2, n=$? $T_{n}=77$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$77=31 / 2+(n-1) 3^{1 / 2} 2$
$77=3^{1} / 2+3^{11 / 2 n}-3^{1} / 2$
$77=31 / 2 n$
$\mathrm{n}={ }^{77} / 31 / 2={ }^{77} / 7 / 2$
$\mathrm{n}={ }^{77} \mathrm{x}^{2 / 7}=22$
(3) $a=3, T_{8}=31, d=? n=8$
$T_{n}=a+(n-1) d$

$$
31=3+(8-1) d
$$

$$
31-3=7 d
$$

$$
d=28 / 7=4
$$

Evaluation

(i) Find the $15^{\text {th }}$ term of the A.P 5, 2, $-1,-4$
(ii) Find the term of the A.P 1, $6,11,16 \ldots$ which is 66.

Arithmetic Mean

If a, b, c are three consecutive terms of an A.P, then the...

