SECOND TERM E-LEARNING NOTE

CLASS: SS1

DATE.....

SUBJECT: FURTHER MATHEMATICS

SCHEME OF WORK

WEEK	TOPIC
1	Arithmetic Progression (AP)
2	Geometric Progression (GP)
3	Linear inequalities in one variable
4	Inequalities in two variables (Graph of inequalities)
5	Introduction to the concept of functions.
6	Review of half term work.
7	Functions (one – to – one, onto, composite and inverse functions)
8	Trigonometric ratio: Graph of Sine, Cosine and tangent of angles, deviation of trigonometric ratio of special angles (30°, 45° and 60°). Application of trigonometric ratios.
9	Logical reasoning: Simple True and False statement, Negation, Converse and Contra positive of statement,
10	Logical reasoning continues: Compound statement, connectives and their symbols, conditional statements and symbols.
11	Revision of Second Term's lesson
12	Examination

REFERECES

- FutherMaths Project 1 and 2 by TuttuhAdegun (main text).
- > Additional Mathematics by Godman
- Further Mathematics by E. Egbe et al.

WEEK ONE TOPIC: SEQUENCE & SERIES CONTENT

- Sequence and series
- Arithmetic Progression (AP)
- Arithmetic Mean
- Sum of terms in an AP

Sequence & Series

A sequence is a pattern of numbers arranged in a particular order. Each of the number in the sequence is called a term. The terms are related to one another according to a well defined rule.

Consider the sequence 1, 4, 7, 10, 13, 1 is the first term, (T_1) 4 is the second term (T_2) , 7 is the third term (T_3) . The sum of the terms in a sequence is regarded as series. The series of the above sequence is 1 + 4 + 7 + 10 + 13 = 35

The nth term of a Sequence

The nth term of a sequence whose rule is stated may be represented by T_n so that T_1 , T_2 , T_3 etc represent the first term, second term, third term ... etc respectively.

Consider the sequence 5, 9, 13, 17, 21

 $T_1 = 5 + 4(0)$

 $T_2 = 5 + 4(1)$

 $T_3 = 5 + 4(2)$

$$T_4 = 5 + 4 (3)$$

$$T_n = 5 + 4 (n - 1)$$

$$T_n = 5 + 4n - 4 = 4n + 1$$
when $n = 30$

$$T_{30} = 4(30) + 1$$

$$T_{30} = 121$$

Find the nth term of these sequences:

Examples

Write down the first four terms of the sequence whose general term is given by:

(i)
$$T_n = \underline{n+1}$$
 (ii) $T_n = 5 \times (^1/_2)^{n-2}$ $3n + 2$

Solution

i.
$$T_n = \frac{n+1}{3n+2}$$

$$T_1 = \frac{1+1}{3(1)+2} = \frac{2}{5}$$

$$T_2 = \frac{2+1}{3(2)+2} = \frac{3}{8}$$

$$T_3 = \frac{3+1}{3(3)+2} = \frac{4}{11}$$

$$3(4)+2$$

 $T_4 = 4 + 1 = 5/14$

(ii)
$$T_n = 5 \times (1/2)^{n-2}$$

 $T_1 = 5 \times (1/2)^{1-2} = 5(1/2)^{-1} = 5(2^{-1})^{-1} = 5 \times 2 = 10$
 $T_2 = 5 \times (1/2)^{2-2} = 5(1/2)^0 = 5 \times 1 = 5$
 $T_3 = 5 \times (1/2)^{3-2} = 5 \times (1/2) = 5/2$
 $T_4 = 5 \times (1/2)^{4-2} = 5(1/2)^2 = 5/4$
The sequence is 10, 5, $5/2$, $5/4$

The sequence is $^2/_5$, $^3/_8$, $^4/_{11}$, $^5/_{14}$

Evaluation

Find the first term of the sequence whose general term is given by

(i)
$$50 - (\frac{1}{2})^n$$
 (ii) $2 + \frac{3}{2}^{(n+1)}$

Arithmetic Progression (A.P) or Linear Sequence

An arithmetic progression (A.P) is generated by adding or subtracting a constant number to a preceding term to get a term. This constant number is called the common difference designated by the letter d. The first term is designated by a.

Ex: A.P d (common difference) a (first term)
$$6\frac{1}{2}$$
, 5, $3\frac{1}{2}$, 2 $-1\frac{1}{2}$ $6\frac{1}{2}$ $-1\frac{1}{2}$ $-1\frac{1}{4}$ $-1\frac{1}{4}$

So for any A.P, the nth term $(T_n = U_n)$ is given by

$$T_n = U_n = a + (n - 1) d$$
. $T_n = U_n = nth term$
 $a = first term$
 $d = common difference$
 $n = no of terms$

Examples

- 1. What is the 10th term of the sequence 10, 6, 2, -4
- 2. Find the term of the A.P 3½, 7, 10½ Which is 77.
- 3. The fist term of an A.P is 3 and the 8th term is 31. Find the common difference.

Solution

(1.) The A.P = 10, 6, 2, -4a = 10, d = 6 - 10 = -4, n = 10 $T_n = a + (n - 1) d$ $T_{10} = 10 + (10 - 1) (-4)$ $T_{10} = 10 + 9(-4) = 10 - 36$ $T_{10} = -26$. (2.) $a = 3\frac{1}{2}$, $d = 7 - 3\frac{1}{2} = 3\frac{1}{2}$, n = ? $T_n = 77$ $T_n = a + (n-1)d$ $77 = 3\frac{1}{2} + (n-1)3\frac{1}{2}$ $77 = 3\frac{1}{2} + 3\frac{1}{2}n - 3\frac{1}{2}$ 77 = 3½ n $n = \frac{77}{3\frac{1}{2}} = \frac{77}{7^{2}}$ $n = \frac{77}{2} \times \frac{2}{7} = 22$ a = 3, $T_8 = 31$, d = ? n = 8 $T_n = a + (n-1) d$ 31 = 3 + (8-1) d

Evaluation

- (i) Find the 15th term of the A.P 5, 2, -1, -4
- (ii) Find the term of the A.P 1, 6, 11, 16.... which is 66.

Arithmetic Mean

31 - 3 = 7d $d = \frac{28}{7} = 4$

If a, b, c are three consecutive terms of an A.P, then the...